

Begin NGSTM NEWBORN GENOMIC SEQUENCING to end the diagnostic odyssey skingsmore@rchsd.org

June 9th 2023, 14:00

Good: Diagnose a critically ill baby in 2 days Best: Identify + treat before symptoms

Presenting complaint: 1 month old female with hemiparesis **Phenotypes of illness**: Cephalohematoma; Enlarged fontanelles

Laboratory workup: Intracranial hemorrhage; Lactic acidosis; Reduced factor 13 activity

rWGS ordered: Genomic Medicine for Ill Neonates and Infants (GEMINI) Study

Diagnosis: Clotting factor 13A1, *F13A1* pathogenic homozygous c.27del p.Phe9fs

Autosomal recessive Factor 13A deficiency

Treatment:

- Fresh frozen plasma or cryoprecipitate;
- FXIII or Catridecacog

Cephalohematoma

Cold Spring Harb Mol Case Stud. 2018 Dec 17;4(6):a003525.

The approach to diagnosing + managing rare genetic disease is unacceptably inefficient + inequitable

Burden of Rare Genetic Disease

1 in 20 children have a rare genetic disease¹ On average, reaching a diagnosis takes **4.8 Years** AND **7.3 Specialists** and some children never get diagnosed

>\$1 T

annual burden of rare disease on U.S. healthcare system² with an average PPPY cost between ~\$9 – 140 K³

Management of rare disease patients is a global issue that needs to be addressed by integrated healthcare systems

¹ Estimates of number of rare diseases are 5000 – 8000, and U.S. rare disease prevalence are 1 in 10, where children are about half. ² ~\$1 T annual cost of subset of 379 rare diseases, comprised of direct and indirect costs, non-medical costs, and healthcare costs not covered by insurance. ³ Range from rare diseases diagnostic / treatment costs, compared to <\$6 K annual cost for non-rare disease pts. PPPY: Per patient per year. Source: Bavisetty. *Rare Dis.* 2013; Marwaha. *Genome Medicine.* 2022; Tisdale et al. *Orphanet Journ. Rare Disease.* 2021; Yang et al. *Orphanet Journ. Rare Disease.* 2019; RCIGM Prior Materials; NIH; ClearView Analysis.

BeginNGS is informed by 11 years experience delivering rapid diagnostic genome sequencing for critically ill children

to end the diagnostic odyssey

Future Trends in Genomic Medicine

Rady Children's Institute Business Confidential

What if we could decode all babies' genomes in the 1st week of life?

~750 genetic diseases affect newborns that could be screened by genome sequencing for which somewhat effective therapeutic interventions currently exist.

BeginNGS Founding Partners

Genomic Medicine

BeginNGS will eliminate the diagnostic odyssey + provide equitable access to optimal precision care

NEWBORN GENOMIC SEQUENCING to end the diagnostic odyssey

IGS[™]

Lengthy diagnostic odyssey prevents effective management of genetic disease

Challenges of Genetic Disease Care

Specialist expertise + treatment access for genetic disease is **limited** to centers of excellence

ed 8-8

Difficulty identifying rare disease patients creates challenges for drug development

Begin

digital healthcare delivery system for genetic disease families + their healthcare providers

Population genome sequencing to identify genetic disease at/before symptoms in newborns in an acceptable manner to families + physicians

Treatment guidance + referral platform to support non-expert physicians + provide equitable access to optimal treatment

4.h

Aggregated genomic database accelerates therapeutic innovation

+ approval + increases access for patients

gtrx.radygenomiclab.com: 341 genes x 410 disorders x 1,654 effective therapies

Indication Contraindication Timing Efficacy Evidence for efficacy Adverse effects

Nat Commun. 2022 Jul 13:4057.

gtrx.radygenomiclab.com: 341 genes x 410 disorders x 1,654 effective therapies

Carglumic acid

INXIGHT

Must be started within Hours, Days or Week

Am J Hum Genet. 2022 109:1605-1619.

Final Selection of Disorders, Genes, Inheritance Patterns, Variants for BeginNGS

Problems & Solutions:

- 1. One gene \rightarrow several disorders
 - Retain disorders with strong gene-disorder association
 - Lump disorders that are a spectrum
- 2. One disorder \rightarrow several patterns of inheritance
 - Retain patterns of inheritance with strong evidence
 - Add female carriers for X-linked disorders with Lyonization
- 3. Review ability of short-read genome sequencing to identify causative variants
 - 410 disorders, 341 genes
- 4. ~50,0000 ClinVar & Genomenon semi-structured "pathogenic" + "likely pathogenic variants"
 - Extract, transform, load to TileDB; Python queries
 - Train with true positive + true negative population genome sets

BeginNGS Workflow

Am J Hum Genet. 2022 109:1605

GTRx empowers non-COEs to use BeginNGS, navigate genome results + optimally treat rare disease

https://gtrx.radygenomiclab.com

Genomic Medicine

Phased Consortium Activities to Make Genome Based Screening a Reimbursed Reality

Retrospective clinical trial of BeginNGS

Goals

Radv

- 1. Train + test BeginNGS in 2 million <u>DIVERSE</u> cases + controls
- 2. Forces scaling of informatics to millions of genomes

Retrospective study 1 demonstrated excellent sensitivity and specificity

Retrospective testing of BeginNGS in 458,000 genomes *Am J Hum Genet*. 2022 109:1605.

Radv

Children's Institute

Simulated BeginNGS testing

3 false positives/1000 screens

Compared with rapid diagnostic genome sequencing

Phased Consortium Activities to Make Genome Based Screening a Reimbursed Reality

	Research								
Phase	Phase 1: Complete	ed Phase 2: In Progress		Phase 3: Clinical test		Phase 4: Demonstrate clinical utility		Phase 5: Early commercial- ization	Phase 6: Early Standard of Care
Scope + Goals	 Consortium announced Prototype: 388 disorders, 29,875 variants Retrospective study 1: Sensitivity 89%, False positive rate 2.7/1,000 	 412 disorders, 40,783 variants Sensitivity of 91% Prospective pilot clinical trial 1 							
End	August 2022	August 2023							
Scalab ility Rady	4,376 retrospective cases & 454,000 controls	7,575 retrospective & 50 prospective cases; 454,000 controls							
Childrens	Genomic Medicine [®]								17

Pilot prospective clinical trials of BeginNGS

<u>Goals</u>:

- 1. Assess safety, timing, potential adverse effects of BeginNGS
- 2. Inform optimal design & size of clinical utility/cost effectiveness study

Status: 24 newborns enrolled; 1 NBS screen positive; 5/20 rapid diagnostic genome sequencing positives

Phased Consortium Activities to Make Genome Based Screening a Reimbursed Reality

Genomic Medicine®

	Research		Lock down		Clinical service	
Phase	Phase 1: Complete	ed Phase 2: In Progress	Phase 3: Clinical test	Phase 4: Demonstrate clinical utility	Phase 5: Early commercial- ization	Phase 6: Early Standard of Care
Scope + Goals	 Consortium announced Prototype: 388 disorders, 29,875 variants Retrospective study 1: Sensitivity 89%, False positive rate 2.7/1,000 	 412 disorders + 40,783 variants Sensitivity of 91% Prospective pilot clinical trial 1 	 CLIA validated BeginNGS test ~500 disorders 3rd retrospective study with HEOR Prospective pilot clinical trials 2 & 3 	 Automation & EHR integration ~750 disorders 4th retrospective study Large, adaptive clinical utility/cost effectiveness trial 	 Start reimbursed BeginNGS services Scale to 100k newborns ?1000 disorders 	 Sustainable, population screening that is comprehensive, well accepted and improving outcomes
End	August 2022	August 2023	Mid 2024	Late 2025	End 2026	2027+
Scalab ility Rady	4,376 retrospective cases & 454,000 controls	7,575 retrospective & 50 prospective cases; 454,000 controls	~10,000 retrospective & 600 prospective cases; ~1 million controls	~20,000 newborns, 2 million controls	100,000 newborns	1 million newborns
Childrens	Institute					19

Comparison of specification of BeginNGS with other diagnostic + screening tests for genetic diseases

	Microarray + Karyotype	Gene Panel Test	Diagnostic Rapid Genome Sequencing	BeginNGS	California Newborn Screening of DBS	
Population tested	Children in ICUs with suspected genetic diseases			Primary Use: All newborns Multiple secondary uses		
Genetic disorders evaluated	~1,000	~2,000	~7,000	~750	80	
Cost per newborn	\$1,887	\$4,500	\$7,000	\$500	\$211	
Average diagnostic rate	14%	28%	38%	5%	0.18%	
Average cost per newborn diagnosis	\$13,978	\$16,071	\$18,421	\$10,000	\$118,688	
Median net savings per newborn tested	n.d.	n.d.	\$14,265	?	n.d.	

Meet Fitz: NBS + Diagnostic Genome Sequencing + Gene Therapy Success Story

USA TODAY

- Appeared healthy at birth
- Screen positive for Severe Combined Immunodeficiency (SCID)
- Rapid diagnostic genome sequencing identified Athabascan (Artemis) SCID in 1st week of life
- Precise diagnosis allowed Fitz to qualify for an *exvivo* gene therapy clinical trial during infancy
- Lentivirus/DELRE1C phase 1 transduction of autologous CD34⁺ cells successful
- Read his story in USA Today here: <u>Baby Fitz was</u> born without an immune system. His treatment offers hope for curing rare diseases. (yahoo.com)

- 1. BeginNGS is a a **digital healthcare delivery system for genetic disease families + their healthcare providers** that **starts at birth + extends across the lifespan**
- 2. Screening goal: 750 diseases, \$500 per screen
- 3. BeginNGS is being undertaken by an international consortium
- 4. Phase 1 studies indicated false positive rate of 3/1,000 and sensitivity of 91% for 388 diseases
- 5. Phase 2 retrospective and prospective studies underway x 410 diseases
- 6. Like rapid diagnostic genome sequencing, this is a 10-year journey
 - De-risk and amortize effort by collaboration with genomic NBS efforts world-wide

Acknowledgements

Thank you to 150 people at Rady Children's Institute, Alexion, illumina, Fabric, TileDB, Genomenon, Plumcare, and Rady Children's Hospital who are undertaking this.

Thank you sponsors - Ernest and Evelyn Rady, the Marriott Foundation, the Conrad Prebys Foundation, NICHD, NCATS, NHGRI, our philanthropic donors, and sponsoring pharmaceutical companies.

A Deo lumen, ab amicis auxilium

